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CDNICAL 'I'JIS IN SUPEBSONIC FLOW"

. m =

"By W. Eantuche and H. Wendt

3 In the case of cones in exielly symmetric flow of supersonic
veloclity, adlabatic campression tekesa place between shock wave and
surface of the cone. Interpolation curves between shock polars
and the surface are the:efore necessary for the complete under-
standing of this type of flow. They are given in the present
report by graphical~-numericel integration of the differentlial
equation for all cone angles and alrspeeds.

INTRODUCTION

The assumption that a reloclty potential exists in gas flows
with supersonic veloclty is complied with in few specific cases
only. The expansion of a ges around a corner (reference 1), a
closed integrable example of .a supersonic flow, and the flow
egainst a wedge are common ]mowledge.' It is true that a compressi-
bility shock occurs on the latter, but the flow afteir the shock
is a parallel flow again, at least in the cases where the shock
begine et the tip of the wedge. In 1929 Busemenn (reference 2)
discussed the case of conlical tips in exisl flow. In this instance,
wvhen the cone engle for fixed Mach number is not too great, the
flow after the shock is the simplest case of a more general type,
the so-called conical fields, subsequently discussed in greater
detall by Busemann (reference 3). These are (not necessarily
rotation free) dimensionless flows which are reflected on them-
selves by similar distortion from a certain point. All straight
lines through the center of similerity ere cerriers of equal
states of gas (speed, pressure, density). The axial conical field
following a parallel .flow occurs, aeide for flow against conilcel
tips, also for a certain type of campresslon nozzle.

The present- report is 1nt:l.mately linked to Busgmenn's axial
conical fields, but deals only with cones. The exact data and
the further interpretation of Busemenn's apple curves (Apfelkurven)
are given. )

#'Mit Uberachallgeschwindigkeil angeblasene Kegelspitzen,"
Jahrbuch 1942 der deutschen Luftf shrtforschung, pp. 180 - I90.
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THE WEDGE IN SUPERSONIC FLOW

If a compresgibility shock occurs in a two-dimensional
stationary ges flow, the following equations from the continulty,
the momentum balance, and the energy law are applicable:

PI¥in = Poven (1)
Py + Pvig® = B2 * Vst (2e)
P1¥) 1t © Po¥onvay, (20)
Ry Rt A (3)
Bubscripta:
1 quentitlies before shock
2 quantities after shock

Quantities w, &and w; are the veloclty components normal and '

parallel to the shock surface, p the density, p the pressure,
and 1 the heat content (fig. 1). Eguation (2b), together with
equation (1), indicates that w.; = wyp, hence, that the tangential

camponent of the velocity remains unchenged at the shock.

The shock process 1s preferably followed in hodographs with
cartesian coordinates u, v. The states (up,up) obtainable-

by shock from a. certaln initiel speed located, sey In the
u-exis (u3), lie on the closed brench of e cai.tesian sheet of

the shock polars, (fig. 2) whose e?uation for an ideal gas

is readily derived from equations (1) to (3):
a¥e
2 o
Uy = (wy - up v = ()

a* is the criticel velocity, % = -:f- the ratio of the specific
-heate at constent pressure end volume. The normal on the length
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.oonnecting the state before. and aftei- t.ho shock, a chord, obviously
-indicates the direction-of the shock surface.with respect to the

flow, because at the shock only the noxmel ™ cmponent is subJected
to a discontinuity. Thus ;the flopr againgt .a wedge with the angle
26 in figure 3 corresponds-to the conditions represented in fig-
ure 2. The limiting value toward which the angle tends at decreasing
intensity of canpressibility shock 18, therefore, the Mach epgle. Thé
upper limit for 7 1s 90° and appearq \d.th a straight ccmpresai-

ak2
bility shock (“2 -—-02 -0 v rigurea also’ shovs for f:l.xed

Mach number a maximum deﬂectlon, that is, & greatest possible
wedge angle. For wedges with smaller angle two compreseibility
shocks are possible, one of which generally leads to supersoiics
end ons to subsonics. The practically occurring solution, denoted
as steble, is the supersonic solution, which, as demonstrated by
G- Guderley can also be proved experimentally. Since the contact
point of the tangent from the zero point of the hodograph to the
shock polar does not, in general, colnclde with the intersection
point A of the circle of the critical veloclty, but still liles

in the subsonic zone, there are two subsonic solutions for wedge
angles on the, admittedly, very smaell arc between A and B.

For a wedge iIn a flow at angle greater than the maximum a
curved shock area before the wedge results. The flow after the
ahock 1s no longer potentiel flow, the entropy Jump along eech
streemline is different (fig. 4). All points of the shock poler
are realized. Far from the wedge the compressibility shock runs
out in a Mach wave; this corresponds to the supersonic end of the
shock polars. On the line of symmetry before the wedge is a straight
compressibility shock, that is, the subsonic end of the polars.
Between the two states lie in steady’ sequence the other polnts,
particularly point A of the critical velocity and point B of the
maximm deflection. On the subject of separation of the shock
area from the tip, L. Crocco (reference 4) established, in an
exact theoretlcal analysls of slightly curved wedge surfaces,
that thig separation must teke place before reeching the maximm
angle, which is, to be exact, for a point of the shock polars.
between A and B. One essential condition being, of cowrse, that the
ourvature at the wedge edge .18 other than zero. On considering
Crocco's critical point on the shock area separated from the body, .
the streamline there qan start only with the curvature zero.

Lestly, the variation of the pressure difference .pp - Iy
- 0.2 end the' z Ro.
referred to dynamlc presswre %p'lul and__the ratio > of
. o
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the tank pressure be:t’ore ang, a.fter the shock follows as

' Ea__gl..z( - __-_ -~ (5)
: "1“1

N (n+1)tan(7-a)-(n-1)tan7"'1 ten 7., |51 @

p, |(5+1) tan7 - (s - 1) tan (7 - 8) ten (7.- 8)

with eguation (6) tho éntr-cppy Jump
. Bo | .
‘48 =R In = (R = gns constant)

P .

is known.
- - . THE CONE IN SUFERSONIC FLOW °

For a solid of rotation in stralight.flow, when the -shock sur-
face adheres to the cone tip, the flow after the shock 1s a conlcal
field. The shock surface 1s a coaxlel cone of rotation (fig. 5).
The: campressibllity shock or the entire cone envelope has the same
strength. In all points of each stre.ght line through the cone
origin the veloclity i1s constent in magnitude and directlon; the
state of gas,. the seme. The shock .conditions (1) to (2) are
exactly the seme as for two-dimensional flow, when, as before,
vy eand wp denote the veloclty components parallel and at right

engles to th¢ shook area. (Owing to the exial symmetry, wy and wy
lie in en axiael section of the cone.) Their erection merely requires
the plane tangential element to the shock area: The potential

flow Following the shock is naturally no longer a parallel flow in
the axial section - 1t would b¢ incompatible with the continuity
conditlon - the streemlinee rather b:came asymptotically narrower
(f1g- 6). TFigure 7 shows the ccnditions in the hodograuph for one
axiel section, with u and v denoting the velocilty components
paraellel and at right angles to the axis of rotation. Because of
the conical c¢haracter of the flow in the hodograph all streamlines
are represented by the same curve. The veloclty before the shock

1s along the exis of” the abscissa (uj). At the shock cone with

the cone engle 27 tho streamlines are deflected by the angle 8,
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as seen from the shock polar related to wuy. The new stete up, W,

i1s transferred by adiabatic compression to the state Uz, 03 at the

. cone envelope. Angle £ 1is then half the included angle of the cone.
A closer exemination of the cenical fleld indicates (compare refer-
ences 2 end 3) that the normal in a certain point E' of the meridian
curve runs parallel to the straight line thiough the cone tlp, which
carries the gas state dafined by P', es exemplified in figures 6
and 7 for the state u', V' with bhe normal of the slope ¢'. For
the end point U3, Uy diraction of velocity end slope oi the normal

are coincident. Owing to tihle arrangement of streamline and
meridian line, the syecifigation of a meridimn lino cheracterizes
a cone in axiael flow. To obtein a survey over all conical flows,
either the cone opening-engle at the seme eirecpeed, hence the shock
polars, or, which is the same, the strength of the compressibility
shock can bs varied (fig. 8). The locus of the thus obtalnable
atates on the cone envelope, the comnecting line of the ex'}d polints
of the individual meridian curves, 18 called applc curve because
of 1ts perticular shape. Furthermore, the ai:speed can be varied,
so that to each shock polar or each Mach numbe. of flow there
corresponds a different apple curve.

The conical ficld after the compressiblility shock has a
potential and is (u and v agein denoting the velocity com nte
in the axial section parallel emnd at right angles to the axie
characterized by the differentlal cquation )

(u + 0v)2

G

v'" =1+ 1)'2" (7

The deshes indicete derivatione with respect to uj o° signifies
the square of the local sonic veloclity which for ideal gases is
linked with the speed by the relation

r

l k-1
P =52
2

(8)

T pme

The meridian curves are lntegrel curves of equation (7) with the
boundary condition (fig. T) in the point wy, v of the shock polars
with the slope of the comnecting line from (wy, 0) toward (up, ).
This means that the potential flow must precede the state of gas
produced by the compressidbility shock. Moreover, since the normal
to the meridisn curve indicates the polar angles of the respeotive
gtate, the condition for the initlal slope is necessery for reasons
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of continuity. The end of the meridian line is given by the require-
ment that the normal pese through the zero point of the hodograph:
u+ ovv' = 0. Direction of velocity and of normal must be identical.

For the practical detexminaction ef the meridian ourve, a
graphical method based on the shape (identical with equation (7)) of
its different equation

Rm-—8_ (9)

is appropriate. Here (fig. 9) R 1s the radius of curvature, N
the normal section between meridian curve ani U-axis, and U the

1
length of the perpendicular U = :,L"_.P.Ea. from the zero polnt of
. . VL
the hodograph to the normal. As a is a function of the velocity
(formula (8)), the curvaturc radius R in a point of the meridien

curve can be computed by marking off U, N, end w = \/uE + 02.

In the practical performance of this progressive construction 1t

is found that the meridien lines are, in general, obtalned fairly
accurately- This was checked by integration of equation (7) by the
Runge-Kutte approximetion process for ordinary differential equations.
A’ departure in graphicel accuracy occurs only at the meridian curves
arlsing near the enas of the shock polars, “that is nesar the exis.
Most eapily uncertain ln the grephlcal determination 1s the position
of the end point u,, v on the meridian curve, &nd witn 1t the

cone angle. In order to obtain 1t also relatively exact, individual
meridian lines were mathematically cneccked at polnts where their
variation had becn satisfactorily remesented by the construction.
The applicability even of the Runge-Kutta method to the meridien
curves near the axis is limited. But here equation (7) affords
approximations wherc the last l1?:erm at the right is taken équal to

the congtant initiel velue 5'5 in the neighborhood of (uy, 0)
i , . ,

- ane
and :a-ll‘g in the vicinity of Uy = T{’ 0). Quentities &

end & eare the sonic velocitias related to (w, 0) eand (Ty, 0).
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The shape of the meridien curves is thent
v=A Y1 .31 ein u-supersonic (10a)
a? . A _ .

Vm (10v)

The marked approximation character of these formulas -is
readily apparent from the fact that in equation (10a) for all
values of the paremeter. &4 the curves pass through the point

u=u,d= 0, haeve the seme initial shepe E% - 1 and the

initial curvature zero. In equation (10b) the curves pess through .
the initial points (i, Vp) but have the sems initial zero slope.
In gpite of that, the aporoximetions are spfﬁcient to reproclluce
the behavior of the apple curves neer the 'blossocm’ and the 'stem, "
where a logarithmic singularity occurs: )

v o° e
ug = uy - 31 - ——2-— % supersonic (11a)
a,° i
1
. ;
vy =T - = 1n 2 p— subsonic (12%)
JE2
5.12

On comparing .the graphical integration for the aifferent shock .polars
it is found to be best for the maximm velocitlies. For the higher
Mach numbers the curvature radil are too great to ensure good
construction. However, this is usually overcome by substituting °
stralght lines for the ares. But for Mach nvmbers near unity, on
the other hand, the oonstruction becames very inaoccurate because . .
of the abnormal curvature variation along the meridian line. For
the vicinlty of the critical veloclity there is an epproximation

by Busemann which, however, does not become accurate except at

very small shock polars as will be discussed later.
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The alrspeeds oyed for the graphical numerical integration
of equetions f;) and (9) correspond to the pressure factors ?999-9915),
9.6, 992, 988, . . . 96, 956, 945, 920, 870.7 by Busemann's count
in the Hendbook for Experimental Physics (reference 5). The subsequent
table contains the Mach nmumbers M‘!-% or M---Eul and the

. : 1l
Mach éngle referred to the critical and local sonic velocity for these

pressure factors. The ratio of the specific heats K = -?- is 1.405.

. v
The Mach numbers are a little more accurate than in the hendbook.
The bracketed presswre flgure 999.9915 corres to a shock polar

near tho critical velocity at which equation 7) was integrated by
the Busemarm approximation method.

TABLE I
- ,
p-factar | M* = a—i M= % Mach angle | o d‘:;) Flgur
—f
(999.9915) | 1.04106 | 1.0%0 79° 13' i3" » »
996 1.1714 | 1.218 | 55° 10' 33" " 10
2| e e ek o) b
9 1.3 1.5045 19 39' 2 5 12
o9& 1.0472 | 1.6403 | 37° 33' 42 6 13
980 1.5221 | 1.T775 | 34° 14' 9" 6 4
976 1.5 1.91795] 31° 25' ;" 5 15
972 1.6592 | 2.0636 | 28° 59' 7" T 16
968 1.7206 | 2.2157 | 26° 49' 43" 6 17
96 1.7798 | 2.3760 | 24° 53' 22" T 18
- 956 1.8803 | 2.7278 | 21° 30' 20" 8 19
945 2.0223 | 3.3051 | 17° 36' ue" 8 20
930 2.1729 | 4.3776 |:13° 12' 19" 8 21
610.7 2.4369 © 0° 9 22

Figures 10 to 22 represent the shock polars, meridien lines end
apple curves for the sevei'al Mach numbera. (The number of the
figure is glven in the last column of table I.) The starting
points for the meridian curves on the shock polers were so chosen
that the plotted choids of the shock pclars have congtant difference
of angle, A7 (second to the last column, teble I) which amounts to
4% to 9° depending upon the Mach mmber. For the related cone flows
it implies that at the curve Mach number the half included angles
of the chosen .compreesidllity cone form a decreasing arithmetical
sequence from 90° on. The lower limit is formed by the Mach number
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which, however, does not, in genmeral, belong to the sequence. The
. end points o the meridian-lines fix the included angle of the cons
in the stream. They natu:ally form no simple sequence any more.
The five lines plotted between shock polars and apple curve link
the points of the individ meridian curves in which the difference
between slope of normels direction of speed 1s constant. With
the notation of figwre 7 they ere the curves @' - ' = Constant.
The value of the constants is noted at the individuel lines, the
numerals indicate degrees, without it having been written in the
figure. The direction of the normals (9') can be computed for -
the points marked by the thin lines on a merlidian line f-om the
fairly accurately readable speed direotion (¥'). The reading

of ¢' from the figure 1s, in general, not quite sc accurate.

8o for a good interpolation it is advieable to plot the relation-
ship between y' and @' 1ir a right engled system of axis from
the marked points, which then also gives, aside from the end points
of the meridien line where o' = ¥' = ﬂ;, their starting point on
the shock polars, where the direction of Lhe normels is at right
angles to the plotted chord. For the meridlean cwves erising near
the axie in the subsonic renge the first epple curvee carry only
the points, the thin lines aie umitted. The end polnts of the
merildian lines further carry the ratlo of the tenk pressure before
and after the compressibility shock, which naturally is elready
established by the point wup,v, on.the shock. polar. Moreover,

the circle of the critical velocity Vue + % = a* 1g indicated
by dotted lines in each figure.

The family of ample curves is represented in fipure 23. The
lower part givea the shock pole: for each apple. The inneimost
dotted apple 1s obtalned by apwroximation neer the critvical
velocity and corresponds to tac bracketed digits in table I. The:
thin system of curves permits a rough orlentation of the poincs
of the shock polars end apple cuives given by the meridien cwrves.
The exact relation 1s seen from figure 24(e), where the cone angle 2B
is plotted against the includod angle 27 of the compressibility
cone for the individual shock polars. Figure 24(b) shows as
contrast the corresponding relation in the two-dimensional case
between wedge angle 28 and the angle of the compressibility
shock with respect to the flow direction 27. The aforementioned
system of curves in figure 23 contains as first set the curves of
_equal entropy, that is, of fixed tamk pressure ratic at the
oampreseibility shock po'/p, (formula (6)), as exemplified by

' . ) u
2%6 = 9-99, 0.9, end 0.7. The piece of the u-axis 1 E ;& s \/H
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Po
" sorresponds to the curve b L. .At the border of the d.:l.agram, the

° m, fFEI 2
shock poler and epple curve for maximlm velooclty —— = 0.
ak* V k- l Po
As pecond set the straight lines .o = Constent were chosen. ‘By

equation (5) the Jressure rise Po - P at shock referred to dynamic
Pressure Eplul is constant on the linee wup = Constant. The

subsequent adiabatic pressure i-ise 1n the conlicel field after the
shock up to pressure p, at the cong envelope 1s obtalneble from
the gas states - ug, and s by edlabatac compression of Do
by the formula 1:2 u3 u3

[
u_+1_n-lu32+1’32;-:|-.
2 2 2 ;ii--_l
k+1 u---lul2 ©
P3-P; B - P 2 2 e
= 2 R 2 val\ K
D u K+l _x-1ups+ U\ K
%Plul %pll = 0 k-1 po' .
= -1
E+1_K-~1 2 D,
C 2 2 a2
P, - P

Figure 25(a) shows the pressurs vatic * plotted agaizist cone

Loju 2
angle for t.he several apyle curves, thet is, airspeeds- ‘Figure 25(b)

represents the two-dimena:lonal cege of ——f‘ against wedge angle.

’]"’1“1

As 1n the' plane, there are, in general, two flows for every
possible cone engle at fixed Mach nwmber. On sufficlently small
cone angles one solutlion is sudsonic, the other, supersonic, the
latter occurring in practice. The range 1n which both are subsonic
"is greater 1in this instence then in the two-dimensional case. Here
all points of the shocl: polar cbuld be rcalized by coneidering a
shock wave seperated from the body. This is insppliceble here
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.because there is no conical field in ths vicinity of an arbltrary
.-point .of the shock wave. .- Hence,.i1t remains an open gquestion which
.range of the apple curves end pressure.curves is of practical

importance. The supersonic range should be assured. A study

" on slightly curved gonical surfaces analogous to Crocco's investi-

gation for the wedge is not yet available.

The limit -of the cone angle following from the apple curves
for a specific Mach number is shown in figure 26, along with the
maximum wedge angle. The angle zone 1 is characterized by the -
fact that for these angles wedge, a8 well as cone, flows exist,
where the shock surfece adheres to the edge or tip. The second
range includes the angles where the knife edges are worse, because
the shock surface has become detached, but the tipe are still useful.
In the third range the shock surfaces for both the we and the
cone lie upstream from the body. Figures 27(a) and 28(a) are
modifications of figures 24(a) and 25(a); the Mach mmber is
consistently marked off on the axis of abscissa. The axis of the
ordinate contains the size of the compressibility shock and pressure
ratio. The individual curves correspond to cones of fixed included
angles. The limiting curve B = 0 shown as dash and dot line (~.-.-)
in figure 28(a) indicates the pressure jump before a blunt obstacle.
If the adlabatic campression up to the stegnation at the body is
elso teken into account, it affords the plotted pitot pressure
(Prandtl-Rayleigh).

Figures 27(b) and 28(b) represent the two-dimensionsal case.

For several cone es (supersonic renge after the shock) the
Jressure calculation by (lla) gives the simple eprroximation
formula:

ok B NV YR M
ot AiF - 1

at which the 1ogarii:hm:l.o eingulerity and Mach relationship 1s correctly
defined, but the numerical factor 2 behind the logarithm is likely
to be uncertain in certain ciroumstances.

In conclusion, the integration of equation (7) for the apple
curve in vicinity of the initial velocity 1s stressed. As demon-
strated by Busemann, a sultable substitution mekes it possidble to
range equation (7) into a differential equation independent of the
Mach number M end the specific retio XK. The seme substitution
frecc the shock poler and hence the Initlal conditliono of the
meridien lines fram M and k. They are employed only
for the determination of the end point of the meridian lines.
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Figure 29 indicetes the results of the integration in the coordinates
x and y foir'the meridién lines :lnd.ependenr. of M and k, which
are related with u and. © through ©,

L

e

,..'s';.l ;L 2 zasslurer A i
2 (-2 o 2 & M-1

The initial abaciaaa on the shock polars 15 written at the meridien
curves: The subsequent meridien lines (not showh) cen ‘be replaced’

by curves y = aePX. The related constants &. and b can be
. t,aken from t.able II. . . :

T ' TABLE II

o a. b

t -0.95 0.00755 -3.29

: -.9 .0298 -2.66
-.5 . 324 -1.48
0 -T763 . =1.37
25 1.02 -1.46
) 1.39 -1.68
75 2.28 -2.30
-9 6.03 -3.59
97 T b -6.65 |.

The end point of the meridian lines for a given M and «x
follows frcm the equation

Yoy, a2 1 ._x
33 k+1(M-1)°% M-1

The dash denotes the derivation with respect to x.

Translated by J. Venier
Netionel Advisory Committee
for Aeionautice
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Figure 1. Conditions at the two-dimensional compressibility shock.

41502
e 405

Figure 2. Shock polars
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Figure 3.~ Wedge in supersonic flow (k= 1.405); the related shock
polar is shown in figure 2,
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Figure 4a.- Schlieren photograph of wedge for adhering
compressibility shock.

Figure 4b.- Schlieren photograph of wedge for separated
compressibility shock.
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Figure Sa.- Schlieren photograph of cone for adhering
compressibility cone.

Figure 5b.- Schlieren photograph of cone for separated
compressibility cone.
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Figure 6.- Supersonic flow around a cone in axial section
(related hodograph shown in figure 7).




Figure 7. Hodograph of an axial section of a cone. Figure 8. Construction of the meridian

v /

Figure 9. Apple curve wiih meridian lines and shock polar.

curve.
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Figure 10.P-factor 996, al: = 1,1714, -Zl = 1,2182. Figure 11, P-factor 992, _l‘__l_ = 1,2763, -2 =|1,3663.
1 a a;
v Wl
v A
‘u
Figure 12. P-factor 988, % = 1,3662, %s 1,5045. Figure 13.
1
v
u
Uy Uy
Figure 15, P-factor 976, —3 = 1,5922, —% = 1,91705.
1

Figure 16. P-factor 972, —= — {6082, —' = 2,0636.
B 1
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(.', ‘T
Uy UL -
Figure 17. P-factor 968, - = 1,7206, e 2,2157.
1
v
“
Uy Uy
Figure 18. p-factor 964, ™= 1,7798, - = 2,3760.

Uy

Figure 19. P-factor 956, - = 1,8893, — = 2,7278.

Figure 20. P-factori 4}, :T' = 2,0228, L — 3,300,



NACA TM No. 1157 Figs. 21,22
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Figure 21. P-factor 930, %' — 91799, % = 4,3776.
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Figure 22. P-factor 870,7, —: — 92,4369 = }/"—"‘1 2 oo



Figs. 23,24a NACA TM No. 1157
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Figure 23, Family of apple curves and shock polars.
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Figure 24a. Relationship between half the cone angle 8 and half included angle 7
of the compressibility shock at different air speeds.



NACA TM No. 1157 Figs. 24b,26a
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Figure 24b. Relationship between half wedge angle 8§ and angle of slope between
compressibility shock and flow velocity at different air speeds.
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Figure 25a.- Pressure on cone surface plotted against %- cone angle B

for different air speeds. (p3 pressure at cone envelope, Py
pressure of flow, -%—plul2 dynamic pressure.)




Figs. 25b,26 NACA TM No. 1157
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Figure 25b. Pressure jump pp - p; at compressibility shock referred to dynamic
pressure in relation to é wedge angle 8 for different air speeds.
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Figure 26. Limiting value of the half cone angle and wedge angle for adheri_né
compressibility shock plotted against Mach number.
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Figure 27a. Half included angle of
compressibility shock against the
Mach number for different cone

angles 2 f -
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Figure 28a.- Pressure on cone
surface in relation to Mach number
for different included angles 28
(p3 pressure at cone envelope, Py

2
pressure of flow, lplu1 dynamic
pressure). 2

Figs., 27a-28b
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Figure 27b. Slope ¥ of compressibility
shock against flow for different wedge
angles 2 § as function of the Mach -
number.
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Figure 28b. Pressure Jjump at compression
shock referred to dynamic pressure for
several wedge angles 2 § against the
Mach number. .




Fig. 29
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